### 32 to 56 Gbps Serial Link Analysis and Optimization Methods for Pathological Channels

Al Neves, Tim Wang Lee (Wild River Technology) Jack Carrel, Hong-Ahn (Xilinx, Inc.) Heidi Barnes, Mike Resso (Keysight Technologies)









### Abstract

For many SerDes applications, when there is a channel that is proving difficult to achieve the required BER performance, the question of where and what to apply to the effort must be answered. The key focus of this tutorial is to unite a concerted channel analysis approach implementing both measurement hardware and EDA tools with contemporary SERDES internal tools (internal eye scan) for the purpose of optimizing BER for highly pathological channels (crosstalk, loss, return loss degradation, etc.,).



### **Speakers**



### Al Neves

Chief Technologist Wild River Technology al@wildrivertech.com



### Jack Carrel

SerDes Apps. Engineer, Xilinx jack.carrel@xilinx.com



### Heidi Barnes

SI/PI Apps. Engineer Keysight Technologies heidi\_barnes@ keysight.com



#### Tim Wang Lee

Ph.D Candidate University of Colorado timwanglee@gmail.com



### Hong Ahn

SerDes Apps. Engineer, Xilinx hong.ahn@xilinx.com



### **Mike Resso**

SI Apps. Scientist Keysight Technologies mike\_resso@ keysight.com





### Agenda



**Jack Carrel** 

SerDes Apps. Engineer, Xilinx

### • Full-Link KR Example

- What is a "Pathological Channel"
- Measuring Pathological Channels
- Band Limited S-Parameters
- Using the Pulse Response to Gain Insight
- BREAK
- Serial Link Equalization Techniques
- Simulating with IBIS-AMI Models
- Test Strategies for Pathological Channels
- Test Cases Simulated
- Test Cases Measured Internal Eye
- Summary



### **Serial I/O Channel – Backplane Channel**







### **100GBASE-KR Backplane Interface**

### 100GBASE-KR







### **100GBASE-KR: PCS/MAC Functional blocks**





### **100GBASE-KR Backplane Channel**



Figure 93B-1—Reference model (one direction from one lane is illustrated)



JAN 31-FEB 2, 2017



# **100GBASE-KR: Channel Testing**











Figure 93C-4—Interference tolerance channel s-parameter test setup





### **100GBASE-KR: Channel Spec's**



$$IL(f) \leq \left\{ \begin{array}{ll} 1.5 + 4.6 \sqrt{f} + 1.318f & 0.05 \leq f \leq f_b/2 \\ -12.71 + 3.7f & f_b/2 < f \leq f_b \end{array} \right\} \quad (\text{dB})$$

$$RL_{d}(f) \geq \left\{ \begin{array}{cc} 12 & 0.05 \leq f \leq f_{b}/4 \\ 12 - 15 \log_{10}(4f/f_{b}) & f_{b}/4 < f \leq f_{b} \end{array} \right\} \qquad \qquad \text{dB}$$

where

fh

is the frequency in GHz is the signaling rate (25.78125) in GHz

IL(f) is the insertion loss at frequency f



Figure 93–13—Insertion loss limit



fh

is the frequency in GHz

is the signaling rate (25.78125) in GHz

RL(f) is the return loss at frequency f



Figure 93–14—Differential return loss limit



JAN 31-FEB 2, 2017

### **100GBASE-KR: Channel Path Details – 1 Lane**







. UBM

### **100GBASE-KR: Rx/Tx Components – 1 Lane**







### **100GBASE-KR: What's next?**

- "No battle plan survives contact with the enemy"
   Helmuth von Moltke
- "Everyone has a plan 'til they get punched in the mouth"
  Mike Tyson

# What if the link doesn't work? "Stay Tuned"





# Agenda



### **AI Neves**

Chief Technologist Wild River Technology

- Full-Link KR Example
- What is a "Pathological Channel"
- Measuring Pathological Channels
- Band Limited S-Parameters
- Using the Pulse Response to Gain Insight

BREAK

- Serial Link Equalization Techniques
- Simulating with IBIS-AMI Models
- Test Strategies for Pathological Channels
- Test Cases Simulated
- Test Cases Measured Internal Eye
- Summary



# Pathological Design Space – Advancing optimization and characterization



- Backplane characterization is a requirement
- Backplanes are, however, very complicated
- Difficult to form a coherent optimization strategy
- Difficult to establish clear margins versus issues
- Good Engineering starts simple and systematic!





JAN 31-FEB 2, 2017

# "It's all about the margins..."

**Jack Carrel** 





# **Pathological Design Space – Guiding Principles**



**XTALK-32 Crosstalk Platform** 

ISI-32 Loss Platform

- Replace backplane with simple pathological structures.
- Structures can be systematically added
- Re-optimization for new and simple channel, then...
- Analysis of margin

UltraScale+ TX and RX, 32Gbpsec NRZ





JAN 31-FEB 2, 2017

# **Pathological Channel Concept**

- What is it?
- Example
- Benefits
- More Examples





### Pathological is an Analogous Concept

- Involving, caused by, or of the nature of a physical or mental disease, denoting a very specific disease
- For our application it denotes a stellar signal integrity structure with something with intentional poor S.I. added
- The overall structure itself, aside from the pathological element, is healthy with good signal integrity



### Pathological Channel Concept – What is it?

- It is a family of interrelated structures
- There is always a root structure (like a THRU)
- Except for a single pathology, the structure is high S.I. (launches, transitions, fiber weave... etc.)
- You add the structures with stable phase, low skew matched cables with S-parameter models (for simulation) for combining pathologies
- EDA simulation of structures match measurements (testing IBIS AMI models, system simulations, testing optimization strategies in EDA)
- It follows quality recommendations of IEEE PG370 TG1, Test Fixture Group



# Pathological Channel Concept – Example



- 2inch DIFF microstrip THRU,
- Good signal integrity and low loss
- Also used for 2X THRU for AFR and Measure Based Modeled deembedding structure on right



JAN 31-FEB 2, 2017



- 2inch DIFF microstrip THRU Exact Copy of left + Asymmetric Ground Void
- Results in SDD11 degradation and mode issue of SCD21

### **Pathological Design Space - Benefits**

- Improve SERDES characterization
- Ability to Improve manufacturing (Test, Product, and Characterization Engineering) and design process
- Drive technology tweaks and next generation products
- Provides systematic approach over complete design space of all pathologies
- Improve Measurement-Simulation correspondence
- Test IBIS AMI models over full Pathological space



### Pathological Design Space Concept – 2-D Space



**Crosstalk Noise** Test vehicle, calculated RX noise as Integrated Crosstalk Noise (ICN)



Loss and Crosstalk combinations can be mapped over the entire design space





# Pathological Space – Loss Example





# Pathological Design Space – Advancing optimization



Crosstalk energy at RX also has SDD11 degradation, possible SCD21 (differential to common mode) and possible resonance.

So did the channel have issues due to RX noise due to crosstalk or the other issues?

This structure provides real crosstalk with good S.I.





JAN 31-FEB 2, 2017

### Pathological Space Design – Crosstalk Example



Decrease width, .5W, 1W, 2W,

•

# Pathological Crosstalk Example – Changing FEXT with same SDD11

Magnitude(S), [dB]



### Sdd[4,1] (FEXT)

Red = 2W Separation Blue = 3W Separation

Green = 4W Separation

Each crosstalk structure is mapped to the same return loss, SDD11, only RX RMS noise changes

20

25

30

35

40

Frequency, [GHz]

10

20 May 2016, 15:56:28, Simberian Inc

15

Project XTALK VNA 50GHz deembedded.J25J26J27J28J29J30J31J32J33J34J35J36 MS3Pair 3W 12port deembed M

Project XTALK VNA 50GHz deembedded.J37J38J39J40J41J42J43J44J45J46J47J48 MS3Pair 4W 12port deembed.MI





# Cables are the hidden problem in many Jitter analysis systems



Good return Loss (or VSWR) and phase stability maintains jitter metrics consistently for skew matched cables (IEC-60966-1 spec) over full BW







Establishing a Pathological approach uses highsignal integrity structures with isolated issues, and adds those structures in a systematic fashion to establish a channel which serves to improve the methodology of determining margin, and optimization strategies and for the modern **SERDES** 



### References

- DesignCon2015 Tutorial: Lee Ritchey, Heidi Banes, Chun-Ting "Tim" Wang Lee, Al Neves: Breaking the 32 Gb/s Barrier: PCB Materials, Simulations, and Measurements
- DesignCon2014 Presentation: Bob Buxton, Al Neves: The Role of Improved Measurements and Tools in Assessing Simulation-Measurement Correspondence for 32 Gbps
- DesignCon2011 Paper: James Bell, Scott McMorrow, Martin Miller, Alfred Neves; Developing Unified Methods of 3D Electromagnetic Extraction, System Level Channel Modeling, and Robust Jitter Decomposition in Crosstalk Stressed 10 Gbpsec Serial Data Systems
- WRT Skew Matched Data Sheets, <u>www.wildrivertech.com</u>
- XTALK-28/32 Data Sheet
- ISI-28/32 Data Sheet
- IEEE PG370 TG1, Test Fixture Group Draft 1.0



### Thank You! – Visit us Booth #850



Deschutes River Maupin, Oregon

- Technology Development Platform 50GHz – Industry First
- Check out our latest Hermetic Cables to 50GHz
- 70GHz Test Fixture Design

Alfred P. Neves Chief Technologist <u>www.wildrivertech.com</u> al@wildrivertech.com





JAN 31-FEB 2, 2017

### Agenda



Mike Resso

SI Apps. Scientist Keysight Technologies

- Full-Link KR Example
- What is a "Pathological Channel"
- Measuring Pathological Channels
- Band Limited S-Parameters
- Using the Pulse Response to Gain Insight

BREAK

- Serial Link Equalization Techniques
- Simulating with IBIS-AMI Models
- Test Strategies for Pathological Channels
- Test Cases Simulated
- Test Cases Measured Internal Eye
- Summary



# Where are We?

- In the Lab
- Early in design cycle
- Making measurements of prototype channel
- Backplane example
- Learn as early as possible:
  - Impedance profile
  - Insertion Loss
  - Return Loss
  - Eye diagram
  - Mode conversion





# Specifics of Data Visualization

- Traditional Options:
- Step Response
- Impulse Response
- S-parameters
- Eye Diagrams
- Trending Options:
- Single Pulse response
- Channel Operating Margin (COM)
- PAM-4 Eye Diagram
- Multiport Analysis





.

# Step Response (TDR/TDT) vs Impulse Response





.

# Impulse Response Derivation



Measuring Pathological Channels 5 UBM
# Why Differential Topologies?

- Ideal differential devices
  - Low voltage requirements
  - Noise and EMI immunity
  - Virtual grounding
- Non-ideal devices are not symmetric
  - Can be identified by signalconversions
    - Differential  $\rightarrow$  Common
    - Common → Differential
- Differential signal integrity design tools are needed





.

#### **Differential S-parameters**





JAN 31-FEB 2, 2017

## Our Analysis: Data Mining The Matrices

- TDD11-Differential impedance profile
- TDD21-Differential time domain transmission
- SDD11-Differential return loss at port 1
- SDD21- Differential insertion loss from port 1 to port 2
- SCD21-Differential-to-common mode conversion from port 1 to port 2
- SCD31- Differential-to-common mode conversion from port 1 to port 3
- SCD41-Differential-to-common mode conversion from port 1 to port 4





# **Ground Plane Discontinuity**







#### Analysis of Ground Plane Discontinuity













Measuring Pathological Channels 10

# Mode Conversion Analysis of Ground Plane Discontinuity



Locate Source of Mode Conversion

- Display mode conversion waveform (TCD11)
- Place marker on largest peak or valley
- Co-display impedance profile (TDD11) on same plot
- Autoscale and follow time marker to known structure





42

#### Simple 4-port Measurements are No Longer Enough















# 12-Port S-Parameters: Defining the Ports







#### 12-port Crosstalk Test Structure





#### 12-port Crosstalk Test Structure1







#### 12-port Data Mining







50.00 GHz

50.00 GHz

#### 12-port Mode Conversion Analysis







#### How to Obtain 12-port s-parameter Data?

- Method #1: Use 12-port VNA
- Method #2: Use 4-port VNA with "Round Robin"
  - Requires 16 separate 4-port measurements to build 12port s-parameter
  - 12-port can be build "live" or off line







#

#### Differential NEXT & FEXT Measurements w/4-port VNA





#### Round Robin Method of Building 12-port s-parameter









#### Round Robin Method of Building 12-port s-parameter







#### Comparison of 12-port 26.5GHz Measurement with 16 4-port 50GHz Measurements "Built Up"







.

#### Test System with 26-port PXI-VNA @ 26.5GHz







.

# PAM-4 Eye Diagram







## Channel Operating Margin (COM)

New Single Figure of Merit for Channel Analysis

- 100 GbE
- IEEE 802.3bj-2014
- Over 500 lines of MATLAB code
- User input required:
  - 12-port s-parameter
- COM test result:
  - Single number in decibels





.

# What Did We Learn?

- New data visualization options are available today
- Standard 4-port s-parameters are no longer enough
- "Round Robin" methodology can save \$\$
- Mode conversion analysis can identify problems early
- PAM-4 and COM are now implemented in convenient tools





## Resources

- PLTS 2017 Release: <u>www.Keysight.com/find/plts</u>
- Keysight booth # 1234
- Mike Resso: <u>mike\_resso@Keysight.com</u>
- <u>"Signal Integrity Characterization Techniques"</u>, M. Resso and E. Bogatin, second printing 2015, International Engineering Consortium





# Agenda



#### Heidi Barnes

SI/PI Apps. Engineer Keysight Technologies

- Full-Link KR Example
- What is a "Pathological Channel"
- Measuring Pathological Channels
- Band Limited S-Parameters
- Using the Pulse Response to Gain Insight

BREAK

- Serial Link Equalization Techniques
- Simulating with IBIS-AMI Models
- Test Strategies for Pathological Channels
- Test Cases Simulated
- Test Cases Measured Internal Eye
- Summary



#### **Measuring Band Limited S-Parameters**

#### Simulation requires a cascade of S-Parameters to analyze pathologies.











## S-Parameters are Transformed to the Time Domain



Non-Causal Ripple - Gibbs Phenomena





## **Error Due to Gibbs Phenomena**





## **Required Channel Bandwidth**







# Do the Rules of Thumb Really Help?





( )

#### Simulated Eye Diagrams with Band-Limited S-Parameters

32 Gb/s , PRBS15, RT\_10-80 13ps, Eye Diagrams







# **Comparing Single Symbol Response**

Single Pulse Response Highlights the Impact of Band Limited S-Parameters





( )

#### And for 56 GBaud PAM-4

13pS Rise Time Transmitter with single 4.5 inch ISI Channel, PRBS15, No Equalization



**Hilbert Transform with Causality Enforcement** 



#### JAN 31-FEB 2, 2017

# **Conclusion for Lossy Channels**

- S-Parameters are always "band limited"
- 3rd Harmonic is conservative
- Rise time estimate is not enough when rise time>¼ UI

 $Frequency_{3dB} = \frac{0.22}{Rise Time_{(20\% to 80\%)}}$ 

- Simulation algorithms are not all the same!
- Verify with simulation is the best method





- Jack Carrel, et al. "De-Mystifying the 28 Gb/s PCB Channel: Design to Measurement" DesignCon 2014.
- Colin Warwick, "Understanding the Kramers-Kronig Relation Using A Pictorial Proof" Agilent Technologies, Inc. 2010, White Paper 5990-5266EN.
- Eric Bogatin, Signal Integrity Simplified, Chapter 7; Prentice Hall, 2003 (ISBN 0-13-066946-6).
- www.keysight.com/find/eesof-sipi-resources





# Agenda



#### Tim Wang Lee

Signal Integrity Consultant, Wild River Technologies, University of Colorado timwanglee@gmail.com

- Full-Link KR Example
- What is a "Pathological Channel"
- Measuring Pathological Channels
- Band Limited S-Parameters
- Using the Pulse Response to Gain Insight

BREAK

- Serial Link Equalization Techniques
- Simulating with IBIS-AMI Models
- Test Strategies for Pathological Channels
- Test Cases Simulated
- Test Cases Measured Internal Eye
- Summary



# Using Single Pulse Response to Gain Insight of the Channel

Tim Wang Lee, Wild River Technologies





JAN 31-FEB 2, 2017

# The Impulse Response Characterizes a Channel



\*Dirac, Paul (1958), The Principles of Quantum Mechanics (4th ed.), Oxford at the Clarendon Press, ISBN 978-0-19-852011-5.


# The Single Pulse Response of a Channel



Pulse height: depends (NRZ/PAM4)

When using NRZ, the response is the single **Bit** response.

Linear Time-Invariant



#### Single **Pulse** Response



q(t) = p(t) \* h(t)

Single pulse response properties:

- Is a deconstructed eye.
- Shows effect of equalization.
- Gives insights to reflection and crosstalk.
- Helps characterize frequency-dependent loss.





#### Frequency Spectrum of the Single Pulse







# Single Pulse Response Example with WRT ISI-32



# Single Pulse Response Mismatch Signatures



#### Examine Single-ended Crosstalk With Step Response





# Single Pulse Response Example: WRT XTALK-32





The general shape is identical to what we expected, but not the sign. Why?



time (nsec)



#### **Differential signaling!**

We learn a lot more by exercising engineering knowledge and safe simulation.





-0.05

81



0.0

-0.2

32.0

32.5

time (nsec)

- Gives quick insight to the resulting eye.
- Identifies loss, mismatch and mismatch.
- Understand the effect of different equalization.

JAN 31-FEB 2, 2017

33.4

33.0

#### Resources

- Wild River Technologies
  - Booth #850
- Impulse response and signal integrity
  - S.H. Hall and H.L. Heck, Advanced Signal Integrity for High-Speed Digital Designs (2009).
- Impulse response and linear system
  - Dennis Freeman. 6.003 Signals and Systems. Fall 2011.
    Massachusetts Institute of Technology: MIT OpenCourseWare, <u>https://ocw.mit.edu</u>. License: <u>Creative Commons BY-NC-SA</u>.



# Agenda

- Full-Link KR Example
- What is a "Pathological Channel"
- Measuring Pathological Channels
- Band Limited S-Parameters
- Using the Pulse Response to Gain Insight



- Serial Link Equalization Techniques
- Simulating with IBIS-AMI Models
- Test Strategies for Pathological Channels
- Test Cases Simulated
- Test Cases Measured Internal Eye
- Summary



# Agenda



**Tim Wang Lee** 

Signal Integrity Consultant, Wild River Technologies, University of Colorado timwanglee@gmail.com

- Full-Link KR Example
- What is a "Pathological Channel"
- S-Parameter Data Mining
- Measuring Band Limited S-Parameters
- Using the Single Pulse Response to Gain Insight
- BREAK
- Serial Link Equalization Techniques
  - Simulating with IBIS-AMI Models
- Strategies for managing Pathological Channels
- Test Cases Simulated
- Test Cases Measured Internal Eye
- Conclusion





## Single Pulse Response and Equalization

Tim Wang Lee, Wild River Technologies



#### Looking at a Real Channel, ISI and the Root Cause



#### Frequency-dependent Loss Causes ISI



# **Different Equalization Approaches**



#### \*Need a back channel



### Linear Equalization at Rx and its Influence on Crosstalk

Assume channels are symmetric, and equalization is linear.



x1, x2, y1, y2 are signals, and the blocks represent the transfer functions of each structure respectively.



JAN 31-FEB 2, 2017

### Linear Equalization at Tx and its Influence on Crosstalk



Equalization at Tx can affect system crosstalk level.

Given the same channel, crosstalk is sensitive to EQ location **If two adjacent** channels require different EQ.





#### Summary of Equalizers and Priorities Start here! Which tool do you grab first, and when? Channel **Tx Equalization Rx Equalization Power limitation** Noise amplification • ۲ Implementation Adaptation to Tx Rx complexity channel Signal to noise ratio System crosstalk • + Noise level + Crosstalk voltage CTLE FFE DFF 1.2 1.2-1.2 1.0 1.0 1.0 0.8 0.8 0.8 Voltage (V) Voltage (V) Voltage (V) 0.6 0.6 0.6 After Equalization After Equalization After Equalization 0.4 0.4 0.4 Lossy line Lossy line Lossy line 0.2 0.2 0.2 0.0 0.0 0.0

34.2

time (nsec)

34.3

34.4

-0.2-

34.0

34.1

34.2

time (nsec)

34.3

-0.2-

34.0

34.1

-0.2-

34.0

34.1

34.2

time (nsec)

34.3

34.4

31

34.4

# **Continuous Time Linear Equalization Filter**



The goal of CTLE is to create a **high-pass** filter that complements the loss-pass nature of the channel.



JAN 31-FEB 2, 2017

### Flattened Channel Response after CTLE



Construct transfer function from high pass filter  $1/S_{21}$ :

$$H(s) = \frac{A(s)}{B(s)} = K \frac{(s+z_1)}{(s+p_1)(s+p_2)} \qquad H(s) = \frac{A(s)}{B(s)} = K \frac{(s+z_1)}{(s+p_1)(s+p_2)} = \frac{A(s)}{B(s)}$$

 $z_1 = 2\pi \cdot (3.8 \text{ GHz})$  $p_1 = 2\pi \cdot (50 \text{ GHz})$  $p_2 = 2\pi \cdot (51 \text{ GHz})$ 

Can use transfer function to construct passive or active analog CTLE filter.



JAN 31-FEB 2, 2017

# Single Pulse Response and CTLE



# Feed Forward Equalizer at TX



## Single Pulse Response and FFE



### **Decision Feedback Equalizer**



# Summary of Equalization



- EQ equalizes the frequency-dependent spectrum.
- Equalization at Tx can affect system crosstalk level.
- Use analysis and simulation with Tx/Rx IBIS-AMI models to determine what EQ to use and where.



#### Resources

- Wild River Technologies
  - Booth #850
- Equalization Techniques
  - S.H. Hall and H.L. Heck, Advanced Signal Integrity for High-Speed Digital Designs (2009).





# Agenda



#### **Jack Carrel**

SerDes Apps. Engineer, Xilinx

- Full-Link KR Example
- What is a "Pathological Channel"
- Measuring Pathological Channels
- Band Limited S-Parameters
- Using the Pulse Response to Gain Insight
- BREAK
- Serial Link Equalization Techniques
- Simulating with IBIS-AMI Models
  - Test Strategies for Pathological Channels
  - Test Cases Simulated
  - Test Cases Measured Internal Eye
  - Summary





• Xilinx UltraScale+ IBIS-AMI Model: TX



TX PMA

- Pre-emphasis "0 thru 31" 0 dB to 12.96 dB emphasis Default: 0
- Post-emphasis "0 thru 31" 0 dB to 6.02 dB emphasis Default: 0
- Main Tap "0 thru 31" 191 mVpp to 933 mVpp Default: 28
- TX\_PVT "TX\_PVT, 0--typical, 1--fast, 2--slow" Default: 0





Xilinx UltraScale+ IBIS-AMI Model: RX



**RX PMA** 

- RXLPMEN "0=DFE mode; 1=LPM mode" Default: 0
- RX\_XMODE\_SEL "0= >6.25Gbps;  $1 = \leq 6.25$ Ggbps" Default: 0
- DFE\_RSV\_0 "0 thru 127" Default 0 (Depends on insertion-loss and data rate)







3

Include supplied die and package S-parameter files in simulation.

Specify

- Line rate
- Tx data pattern.
  - Provided PRBS Patterns
  - Custom pattern from external file

> Samples per bit (SPB) of 64 is recommended for data rates of 1 Gb/s and above.

> For data rates 1 Gb/s and below, SPB of 128 or higher is recommended.

It is suggested to run at least 1,000,000 bits, and ignore first 500,000 bits.





> Simulation generates Adaptation loop output file:



#### Adaptation Loop Output



5

#### **>** Simulation BER Contour Mask for UltraScale+ GTY Transceiver







6











UBM

8
# And now to target simulations for channel diagnosis...







- Full-Link KR Example
- What is a "Pathological Channel"
- Measuring Pathological Channels
- Band Limited S-Parameters
- Using the Pulse Response to Gain Insight
- BREAK
- Serial Link Equalization Techniques
- Simulating with IBIS-AMI Models
- Test Strategies for Pathological Channels
- Test Cases Simulated
- Test Cases Measured Internal Eye
- Summary



**Jack Carrel** 

SerDes Apps.

Engineer, Xilinx



# SerDes Link Debug m bits & pieces





.

UBM

# SerDes Link Debug - 4 Port Device







# **SerDes Link Debug – Power Supply Measurements**

- Use 50 ohm probing. Using 50 ohms makes it easy to have a constant impedance for the entire path from the DUT to the oscilloscope input.
- Band limit the measurement. Limiting the bandwidth will
  - Reduce confusion from out-of-band energy.
  - Allows for easier detection and interpretation of measured waveform. (i.e. observe only what matters)

#### $_{\odot}\,$ To band limit, use a low-pass filter by using either

- External low-pass filter between the DUT and scope input
- Math processing function on the oscilloscope (Low-pass filter function)







# **SerDes Link Debug – Clock Measurements**

#### Clock measurements

- Use TX output to measure clock frequency and phase quality
- Use alternating pattern of equal numbers of one's and zero's to generate 'square wave'.
  - Frequency dependent channel losses are mitigated with alternating high-low pattern.
  - Pattern dependent distortion is minimized
- Time Domain
  - Use scope with Jitter analysis package to measure Rj from TX square wave pattern.
  - Besides Rj look for Pj. Existence of Pj may be caused by interference (i.e. power supply noise, crosstalk, etc.)
- Frequency Domain
  - Use Signal Analyzer or Spectrum Analyzer with phase noise package
  - Measure phase noise
    - Observe noise up to PLL tracking frequency (~1 to 10MHz)
    - Look for significant spurs at higher frequencies.
    - Calculate Rj for sanity check (Most instruments will do this for you.)







UltraScale GTH RefClk: 500.0 MHz Line rate: 10.0 Gb/s

Scale phase noise to carrier Frequency:

$$dB + \left[20 \bullet \log_{10} \left[\frac{F_{OUT}}{F_{IN}}\right]\right]$$







UltraScale GTH RefClk: 500.0 MHz Line rate: 10.0 Gb/s

Scale phase noise to carrier Frequency:

$$dB + \left[20 \bullet \log_{10} \left[\frac{F_{OUT}}{F_{IN}}\right]\right]$$





UltraScale GTH RefClk: 500.0 MHz Line rate: 10.0 Gb/s

Scale phase noise to carrier Frequency:

$$dB + \left[20 \bullet \log_{10} \left[\frac{F_{OUT}}{F_{IN}}\right]\right]$$





UltraScale GTH RefClk: 500.0 MHz Line rate: 10.0 Gb/s

Scale phase noise to carrier Frequency:

$$dB + \left[20 \bullet \log_{10} \left[\frac{F_{OUT}}{F_{IN}}\right]\right]$$





UltraScale GTH RefClk: 500.0 MHz Line rate: 10.0 Gb/s

Scale phase noise to carrier Frequency:

$$dB + \left[20 \bullet \log_{10} \left[\frac{F_{OUT}}{F_{IN}}\right]\right]$$







UltraScale GTH RefClk: 500.0 MHz Line rate: 10.0 Gb/s

Scale phase noise to carrier Frequency:

$$dB + \left[20 \bullet \log_{10} \left[\frac{F_{OUT}}{F_{IN}}\right]\right]$$







# **SerDes Link Debug – IBERT**

#### IBERT – Integrated Bit Error Rate Tester

- Serial I/O Analyzer
- Full access to transceiver configuration registers
  - TX pre-emphasis and post-emphasis
  - RX equalization
  - Decision feedback equalizer (DFE)
  - Phase-locked loop (PLL) divider settings
- Pattern Generator/Checker
- Internal eyescan
- Runtime accessible thru JTAG
- Interactive or TCL scripted control





12

- Loopback testing (Run bit error test under each condition)
  - Near-end fabric loopback (verifies fabric logic inbound and outbound)





- Loopback testing (Run bit error test under each condition)
  - Near-end fabric loopback (verifies fabric logic inbound and outbound)
  - Near-end PCS loopback (verifies fabric to GT interface inbound and outbound)





- Loopback testing (Run bit error test under each condition)
  - Near-end fabric loopback (verifies fabric logic inbound and outbound)
  - Near-end PCS loopback (verifies fabric to GT interface inbound and outbound)
  - Near-end PMA loopback (verifies fabric thru PMA path inbound and outbound)







- Loopback testing (Run bit error test under each condition)
  - Near-end fabric loopback (verifies fabric logic inbound and outbound)
  - Near-end PCS loopback (verifies fabric to GT interface inbound and outbound)
  - Near-end PMA loopback (verifies fabric thru PMA path inbound and outbound)
  - Channel loopback
    - Prefer a loopback thru as much of the channel as possible to verify channel performance





.

UBM

#### Loopback testing (Run bit error test under each condition)

- Nearend fabric loopback (verifies fabric logic inbound and outbound)
- Nearend PCS loobback (verifies fabric to GT interface inbound and outbound)
- Nearend PMA loopback (verifies fabric thru PMA path inbound and outbound)
- Channel loopback
  - Prefer a loopback thru as much of the channel as possible to verify channel performance
- Farend PMA





- Loopback testing (Run bit error test under each condition)
  - Nearend fabric loopback (verifies fabric logic inbound and outbound)
  - Nearend PCS loobback (verifies fabric to GT interface inbound and outbound)
  - Nearend PMA loopback (verifies fabric thru PMA path inbound and outbound)
  - Channel loopback
    - Prefer a loopback thru as much of the channel as possible to verify channel performance
  - Far-end PMA
  - Far-end fabric loopback, if clocking supports it





# **SerDes Link Debug – Managing Equalization**

#### <u>Resources</u>

- Receiver
  - CTLE
  - DFE
  - Auto-adaptation
- Transmitter
  - Output amplitude
  - FFE
    - Pre-emphasis
    - Post emphasis







#### **SerDes Link Debug**

#### So, how did we do?...







# Thank you!

#### **QUESTIONS?**





#### Agenda

Heidi Barnes

SI/PI Apps. Engineer Keysight Technologies

- Full-Link KR Example
- What is a "Pathological Channel"
- Measuring Pathological Channels
- Band Limited S-Parameters
- Using the Pulse Response to Gain Insight
- BREAK
- Serial Link Equalization Techniques
- Simulating with IBIS-AMI Models
- Test Strategies for Pathological Channels
- Test Cases Simulated
- Test Cases Measured Internal Eye
- Summary





#### Verify the Simulation Set-up

Good IBIS AMI Models come with an example for comparison

#### **IBIS AMI Kit Example**



#### My Simulator Setup











# **Design of Experiments**





#### Simulation of High Loss Channel Pathologies for 32 GBaud





#### Tx/Rx Model Details and Fixture S-Parameters



#### Increasing Tx Equalization Helps ISI Loss







#### Maximum Loss – 15.5in + 13in ISI Channels



Tx Precursor = 6 dBOpen Eye 

time, psec





#### Increasing Tx Equalization Doesn't Help with Reflections



#### Minimum Tx Equalization Maximizes Signal to Noise





JAN 31-FEB 2, 2017

#### Summary: Minimal Tx FIR with Automated Rx DFE, CTLE

- Real channels have reflections and crosstalk.
- Too much Tx equalization reduces the signal to noise ratio
- Minimize the Tx equalization and maximize the automated Rx DFE equalization.





#### References

- Jack Carrel, et al. "De-Mystifying the 28 Gb/s PCB Channel: Design to Measurement" DesignCon 2014.
- J. Carrel, R. Sleigh, H. Barnes, H. Hakimi, and M. Resso, "Tips and Advanced Techniques for Characterizing a 28 Gb/s Transceiver", DesignCon 2013 (13-TP5)
- Keysight ADS Simulator
  <u>www.keysight.com/find/eesof-sipi-resources</u>
- Xilinx UltraScale+ ArchitectureGTY Transceivers IBIS-AMISignal Integrity Simulation Kit <u>https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html</u>
- Wild River Technology Modeling Platforms
  <u>https://wildrivertech.com/products-2/modeling-platforms/</u>





#### Agenda

- Full-Link KR Example
- What is a "Pathological Channel"
- Measuring Pathological Channels
- Band Limited S-Parameters
- Using the Pulse Response to Gain Insight



Hong Ahn

SerDes Apps. Engineer, Xilinx BREAK

- Serial Link Equalization Techniques
- Simulating with IBIS-AMI Models
- Test Strategies for Pathological Channels
- Test Cases Measured Internal Eye
- Summary



#### **Measurement Set up**

#### Using 16nm Xilinx UltraScale+ GTY Transceiver

- Line Rate: 32Gbps
- Using Internal non-disruptive 2D eye scan

#### >2D eye scan configuration

- 64 horizontal steps
- 256 vertical steps
- BER is 1E-10

#### Stress Channel Configuration

- Two Aggressors for NEXT
- Insert Pathological Channel





#### **Internal 2-D Eye Scan**








## **Measurement Set up**

### Using 16nm Xilinx UltraScale+ GTY Transceiver

- Line Rate: 32Gbps
- Using Internal non-disruptive 2D eye scan

### >2D eye scan configuration

- 64 horizontal steps
- 256 vertical steps
- BER is 1E-10

### Stress Channel Configuration

- Two Aggressors for NEXT
- Insert Pathological Channel





## The 1<sup>st</sup> Pathology: + More Loss

- Non-intended additional Loss is critical factor in Pathological Space
  - Loss is treated as a Goal rather than pathology

### >Insert additional trace section to add more loss







## **Channel Characteristic by the additional loss**

No Crosstalk and Well Optimized Channel











UBM

6

### **Degradation by the additional loss:** 2-D Eye Scan Result No Crosstalk and Well Optimized Channel



## The 2<sup>st</sup> Pathology: Reflection

### **>**Reflection is also critical factor in pathological space

The reflection by non-optimized channel element causes the noticeable degradation

### **>**Replace the part of trace by the reflective structure









## **Channel Characteristic by Medium Reflection**

Return Loss from TX



- Insertion Loss is around 38dB
- High Reflection at < 10GHz
- No Crosstalk



#### **Return Loss from RX**





## **Channel Characteristic by High Reflection**



- Insertion Loss is around 38dB
- Severe Reflection at < 10GHz
- No Crosstalk



**Return Loss from RX** 







### The Degradation by Reflective Pathological channel

#### "-38dB" Loss Channel



Medium Reflection Channel

#### **High Reflection Channel**





#### The Reflection steals the margin for the insertion loss







## The 3<sup>rd</sup> Pathology: Crosstalk

>Crosstalk is also one of Critical factor in pathological space

**>**Replace the part of trace by the coupling structure







### **Channel Characteristic by Crosstalk**





- Insertion Loss is around 36dB
- The aggressors are located at Receiver side
- Very High Coupling: around -30dB





UBM

### **The Degradation by Crosstalk**





#### The Crosstalk also steals the margin for the insertion loss



## **Conclusion of Measurement**

- Show Receiver Performance is dropped by any single pathology in Pathological Space
  - More Loss, Reflection and Crosstalk

>Well designed channel can achieve dramatic increase in the channel length

- By reducing pathological signature
- By reducing crosstalk

>Need to find the best combination of "margin eaters" to achieve the longest channel given transceiver performance and architecture

## **Spend your margin wisely!**







# Thank you!

### **QUESTIONS?**





### Agenda

- Full-Link KR Example
- What is a "Pathological Channel"
- Measuring Pathological Channels
- Band Limited S-Parameters
- Using the Pulse Response to Gain Insight
- BREAK
- Serial Link Equalization Techniques
- Simulating with IBIS-AMI Models
- Test Strategies for Pathological Channels
- Test Cases Simulated
- Test Cases Measured Internal Eye





### 32 to 56 Gbps Serial Link Analysis and Optimization Methods for Pathological Channels

#### Top 10 Take-Aways

- 1. Specifications like 100GBASE-KR are a great plan, but they don't provide the insights needed to trade off margins or troubleshoot a failed channel.
- 2. A pathological approach breaks down the signal integrity of a SERDES channel to isolate issues for better optimization of design margins.
- 3. Expanding tools and methods for S-parameter analysis enable frequency domain, time domain, mixed mode, causality, passivity, and COM visualization of potential signal integrity problems.
- 4. Measuring S-Parameters to the 3<sup>rd</sup> Harmonic is conservative for high data rate applications, verifying by simulation can significantly reduce the required bandwidth.
- 5. The single pulse response gives quick insight to the resulting eye. It identifies loss, mismatch and crosstalk issues and helps with understanding how equalization is able to open the eye.
- 6. The 3 main types of equalizers are the CTLE, FIR or FFE, and DFE. The pulse response shows how the DFE only works on the falling edge; FIR and CTLE are needed to improve the rising edge.
- 7. IBIS AMI behavioral models make it fast and easy to simulate high data rate, high loss SERDES Tx/Channel/Rx topologies with sophisticated equalization methods with out divulging vendor IP.
- 8. The signal integrity of a channel must include analysis of all types of margin eating pathologies such as channel losses, clock noise, and power supply noise.
- 9. Full link IBIS AMI simulations of separate channel loss pathologies for ISI, Reflection Mismatch, and Crosstalk show that it is best to minimize equalization at the Tx and maximize it at the Rx when reflections and crosstalk are present.

The End.

10. Full link measurements of separate channel loss pathologies for ISI, Reflection Mismatch, and Crosstalk show the equivalent ISI loss. Finding the lowest combination of crosstalk and mismatches can greatly increase the working length of the channel.



# Thank you!

### **QUESTIONS?**



