Design of Flyover QSFP (FQSFP) for 56+ Gbps applications

Presented by Jim Nadolny, Samtec

Authors

Kyoungchoul Koo(1), Pranay Vuppunutala(1), Jim Nadolny(3), Atieh Talebzadeh(1), Yuan Chen(1), Qian Wang(2), Ben Cooper(3), David Pommerenke(1), James L. Drewniak(1)

- (1) Missouri University of Science and Technology
- (2) Xilinx
- (3) Samtec

SPEAKER

Jim Nadolny

Principle SI & EMI Engineer, Samtec jim.nadolny@samtec.com Samtec.com | @SamtecInc

Outline

Introduction

- Twinax vs PCB traces
- Flyover Technology and FQSFP
- Ethernet Interconnect requirements
- EMI Characterization of FQSFP
 - Design of Test Vehicle
 - Computational approach
 - Correlation Efforts
- \circ Next Steps

- Twinax vs PCB traces
 - Compare the insertion loss of 30 AWG twinax with a 5 mil trace on Meg6

The motivation is to take advantage of the reduced attenuation that twinax cable provides

UBM

A short, high performance connector near the switch chip...

JAN 31-FEB 2, 2017

A QSFP connector with direct attach twinax...

JAN 31-FEB 2, 2017

Flyover Technology and FQSFP

UBM

Twinax cable designed for "suckout free" performance

IEEE 802.3bs interconnect requirements

- Front panel pluggable solutions (QSFP) are qualified using compliance boards
 - Host compliance board tests the module
 - Module compliance board test the host
- Compliance boards for 100 GbE are defined in IEEE 802.3bj (4 channels at 28 Gbps NRZ)
- Compliance boards for 400 GbE are the same as IEEE 802.3bj (8 channels at 56 Gbps PAM4)
 - $_{\circ}$ $\,$ This may evolve as PAM4 implementations mature

To show 56 Gbps PAM4 compliance, we take a mated host-module compliance board approach

UBM

Reference plane location

To show 56 Gbps PAM4 compliance, we take a mated host-module compliance board approach

To show 56 Gbps PAM4 compliance, we take a mated host-module compliance board approach

Approach:

- Full wave simulations of small, simple structures
 - Quick(er) computational time
 - Validate with measurements
 - Build confidence that future steps are built on solid ground
- Start with the QSFP connector
- Incrementally build the model and validation vehicles

Avoid the rookie mistake of putting the entire cable assembly, EMI cage, chassis model and PCBs into CST/HFSS and simulating the total radiated power (TRP)

Design of test vehicle

Computational Approach

Tweaking the model to reflect the test vehicle

S-Parameter Measurements

Time Domain Correlation

Full Wave Simulation

- Energize the twinax cable
- Energy excites the connector, PCB, etc.
- Total radiated power computed by integrating over the computational domain

TRP Measurements

- As with S-parameter measurements, calibration is required to compensate for reflections and attenuation.
- Methodology is NIST traceable

TRP Measurements

We measured the radiation from just the connector

TRP Measurements

We measured the radiation from just the connector

TRP Measurements

Differential results show poor correlation

Next Steps

- More fully explore the twinax to EMI cage termination
- Add the card cage
- Add optical modules
 - Optical ferrule radiation

• Expand frequency range to 40 GHz

MORE INFORMATION

Websites

- emclab.mst.edu
- Samtec.com
- Contact info
 - <u>pv6zf@mst.edu</u>, Pranay Vuppunutala
 - <u>kook@mst.edu</u>, Kyoungchoul Koo
 - <u>ath27@mst.edu</u>, Atieh Talebzadeh
 - jim.nadolny@samtec.com, Jim Nadolny

Thank you!

QUESTIONS?

