Characterization of DDR4 Receiver Sensitivity Impact on Post-equalization Eye

Yong Wang, Xilinx Inc. Thomas To, Xilinx Inc.

Penglin, Xilinx Inc. , Fangyi Rao, Keysight Inc., Juan Wang Xilinx Inc., Sean Long Xilinx Inc.

SPEAKERS

Yong Wang

Sr. Director, Xilinx Inc. yongw@xilinx.com

Thomas To

Technical Director, Xilinx Inc. tto@xilinx.com

Outline

Typical DDR System Configuration

- Channel Signal Attenuation
- Simple DDR Receiver and Input Mask
- o Jitter Measurement Point for Simple DDR Receiver

Problem Statement

o Traditional Simulation Approach with CTLE receiver

CTLE Receiver and Output Eye Mask

- o Overview of CTLE in Signal Improvement
- CTLE Receiver incorporation in Memory System & Output Mask Definition

Channel Simulation in DDR4 system

- o Traditional Simulation Approach with CTLE receiver
- o DJ Incorporation in Statistical Simulation approach
- Conclusion

A Typical DDR System & Channel Attenuation

 \rightarrow DDR Channel Attenuation becomes more significant as data rate increases!

Simple DDR Receiver & Input Mask

 \rightarrow Voltage and Timing Sensitivity (Rx Mask) is to guarantee Rx to capture correct signal state.

Jitter Measurement Point for Simple DDR Receiver

time, psec

 \rightarrow Timing jitter measurement at the Rx Mask defined threshold.

Traditional Jitter Measurement Point in CLTE

- \rightarrow CTLE improves incoming signal jitter.
- \rightarrow One way is to impose Rx input threshold to the output of the CTLE Rx.
- \rightarrow This leads to pessimistic jitter measurement !

CTLE in Memory System (One Byte)

 \rightarrow CTLE implemented in a DDR System.

CTLE in Memory System Improvement

 \rightarrow CTLE improves incoming signal edge rate.

Data Signal Eye Improvement after CTLE

 \rightarrow CTLE output will have common mode variation.

Channel Simulation in DDR4 System

 \rightarrow Jitter should be considered with CLTE output common mode variation.

 \rightarrow Sampling Flop Set up time reference to Vtrip of CMOS logic.

Proposed Simulation Approach at Post Equalization Eye with Rx Sensitivity Impact

 \rightarrow Similar concept can apply to incorporate power supply noise induced DJ

DDR4 Channel Simulation Test Bench

\rightarrow Using Input threshold for post CTLE jitter measurement lead to pessimism .

ER micron IRIS STAT ddmi

Validation Set Up

.

UBM

 \rightarrow Measure Functional Eye for sampling flop.

Read Eye Diagram Measurement

 \rightarrow Functional Eye measured at Vref is within 5% of prediction.

 \rightarrow Relative Light Traffic Test Case.

Post CTLE DQ Eye Jitter with Power Supply Noise

 \rightarrow Jitter measurement after mapping to Vtrip for sampling flop.

Summary & Conclusions

- DDR Channel Attenuation becomes more significant as data rate increase.
- More precise system timing methodology is needed to accurate predict the timing analysis.
- New approach to analyze the system timing was presented using DJ to map the jitter measurement threshold voltage point to the Vtrip.
- New design features for jitter measurement was proposed as a critical design parameters.
- Receiver and Channel co-design is critical in future DDR interface design to enable robust channel timing.

Thank you!

QUESTIONS?

