DesignCon[®] 2015

A CURE FOR INTRA-PAIR SKEW IN HIGH SPEED DIFFERENTIAL SIGNALS

Speaker

Mike Jenkins received his BS in Electrical Engineering and MA in Mathematics from the University of Illinois (Urbana) and his MS in Electrical Engineering from Syracuse University. During his 40 year career, he has held engineering positions at IBM (Data Systems and General Products Divisions), LSI Corp., and Xilinx Corp. with a primary focus in the areas of signal integrity and SerDes design and analysis. He holds 18 patents.

Effects of Intra-pair Skew

- Mode Conversion (increased Common Mode)
 - Increased generation of EMI
 - Increased susceptibility to EMI
 - Less energy in differential signal reaching RX

Causes of Intra-pair Skew

Component and PCB layout asymmetries

Manufacturing variability

PCB Laminate Weave

Measured Width:

Top Width:

factor.

· Top width less than foot

•(0-0.5mils typical).

•Reduced with over etching •Dependent on Cu oz and etch

- Rejectable per IPC if +/-1mil or +/-20% from design.
- Line width can vary up to +/- 0.3-0.5 mils along trace length.

•Close to full width - reduced height. •Unacceptable per IPC •Difficult to catch with AOI More common than admitted

Mouse Bites:

- Rejectable if foot of trace is reduced by +/-20%.
- Many shops will ship if reductions <50%

Fiber Weave Effect

No Common Mode \rightarrow No Skew

Zero common mode

- \rightarrow Vpos(t) + Vneg(t) = 0
- \rightarrow Vpos(t) = Vneg(t)
- \rightarrow when Vpos = 0, Vneg = 0 as well
- \rightarrow Zero skew

Common Mode Block: Ground Plane Cuts

- Cuts in ground planes above and below strip line pair
- W & Gap 2 to 3 times dielectric thickness
- L sets block center frequency (~Nyquist)
 - $L_{1,2} \sim \lambda/4 = [300 \text{ mm/ns}] / [4 * \text{sqrt}(\epsilon_r) * f_{Nyquist}] \quad (\sim 150 \text{ mils } @ f_{Nyquist} = 10 \text{ GHz})$
 - Stagger $L_{1,2}$ for wider stop band (e.g., $L_1 = 130$ mils & $L_2 = 170$ mils)
- This was developed heuristically no pretense of optimality

Common Mode Block: Alternatives

An alternative, somewhat more complex design

[Yangyang Pang, Zhenghe Feng, "A compact common-mode filter for GHz differential signals using defected ground structure and shorted microstrip stubs,"

2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Volume: 4, Publication Year: 2012, Page(s): 1 – 4]

Single-ended Cross-coupling

#DC15

SDD & SCC

#DC15

Differential Pulse Response

Effect of GND Cutouts on Skew

Differential Pulse Response vs. Skew

 Differential pulse responses with & without CM filter nearly identical

- Low level ripple in pulse response with CM filter
 - ...but smaller than a minor reflection in response without CM filter

GND Cutout Geometries

VESIGNU

Isn't this a Slot Antenna?

Where Does the Power Go?

 Transmitted common mode power + power reflected back to transmitter by CM filter almost equal to transmitted power without CM filter

Take Aways

- Skew is a growing problem at higher data rates
- Minimizing common mode also minimizes skew
- "Defected ground planes" can be effective common mode band reject filters
- Be careful not to make accidental antennas 🛞

THANK YOU

