Descincontionio

A CURE FOR INTRA-PAIR SKEW IN HIGH SPEED DIFFERENTIAL SIGNALS
 E. XILINX
 LL PROGRAMMABLEw

Speaker

Mike Jenkins received his BS in Electrical Engineering and MA in Mathematics from the University of Illinois (Urbana) and his MS in Electrical Engineering from Syracuse University. During his 40 year career, he has held engineering positions at IBM (Data Systems and General Products Divisions), LSI Corp., and Xilinx Corp. with a primary focus in the areas of signal integrity and SerDes design and analysis. He holds 18 patents.

Effects of Intra-pair Skew

- Mode Conversion (increased Common Mode)
- Increased generation of EMI
- Increased susceptibility to EMI
- Less energy in differential signal reaching RX

Causes of Intra-pair Skew

- Component and PCB layout asymmetries
- Manufacturing variability

Top Width:

- Top width less than foot -(0-0.5mils typical).
-Reduced with over etching
-Dependent on Cu oz and etch
factor.

0.5 mils along trace length.

Depression: - Close to full width - reduced height. - Unacceptable per IPC - Difficult to catch with AOI More common than admitted

- PCB Laminate Weave
- Rejectable if foot of trace is
reduced by $+/-20 \%$.
- Many shops will ship if reductions
<50\%

No Common Mode \rightarrow No Skew

Zero common mode
$\rightarrow \operatorname{Vpos}(\mathrm{t})+\operatorname{Vneg}(\mathrm{t})=0$
$\rightarrow \operatorname{Vpos}(\mathrm{t})=-\operatorname{Vneg}(\mathrm{t})$
\rightarrow when Vpos $=0$, Vneg $=0$ as well
\rightarrow Zero skew

Common Mode Block: Ground Plane Cuts

- Cuts in ground planes above and below strip line pair
- W \& Gap 2 to 3 times dielectric thickness
- L sets block center frequency (~Nyquist)
- $\mathrm{L}_{1,2} \sim \lambda / 4=[300 \mathrm{~mm} / \mathrm{ns}] /\left[4 * \operatorname{sqrt}\left(\varepsilon_{\mathrm{r}}\right)^{*} \mathrm{f}_{\text {Nyquist }}\right] \quad\left(\sim 150 \mathrm{mils} @ \mathrm{f}_{\text {Nyquist }}=10 \mathrm{GHz}\right)$
- Stagger $L_{1,2}$ for wider stop band (e.g., $L_{1}=130$ mils \& $L_{2}=170$ mils)
- This was developed heuristically - no pretense of optimality

Common Mode Block: Alternatives

An alternative, somewhat more complex design

[Yangyang Pang, Zhenghe Feng,
"A compact common-mode filter for GHz differential signals using defected ground structure and shorted microstrip stubs,"
2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT),
Volume: 4, Publication Year: 2012 , Page(s): 1-4]

(a)

(b)

Single-ended Cross-coupling

no GND Cutout
with GND Cutout

Differential Pulse Response

- Coupling...
... delays effect of faster path

... accelerates effect of slower path
... minimizes common mode pulse response
... has negligible effect on differential pulse response

$1 \rightarrow 2 \& 3 \rightarrow 4$
$1 \rightarrow 4 \& 3 \rightarrow 2$

Effect of GND Cutouts on Skew

16.7 Gb/s Pulse Response thru 6 inches of Megtron 6 strip line

Differential Pulse Response vs. Skew

- Differential pulse responses with \& without CM filter nearly identical
- Low level ripple in pulse response with CM filter
- ...but smaller than a minor reflection in response without CM filter

GND Cutout Geometries

Common Mode Suppression:

Common Mode Insertion Loss / Differential Insertion Loss
$=$
SCC21 (dB) - SDD21 (dB)

Common Mode Suppression

Common Mode Suppression

Isn't this a Slot Antenna?

- Differential pairs on opposite sides of GND cutout
- Some energy ankathru-from_noir to pair, although most unbalanced energy is reflected back to transmitter
- Probably best to avoid using this technique with:
- parallel traces on adjacent planes
- cutouts in external GND planes
- microstrip traces

Where Does the Power Go?

- Transmitted common mode power + power reflected back to transmitter by CM filter almost equal to transmitted power without CM filter

Take Aways

- Skew is a growing problem at higher data rates
- Minimizing common mode also minimizes skew
- "Defected ground planes" can be effective common mode band reject filters
- Be careful not to make accidental antennas $\dot{\theta}^{\circ}$

THANK YOU

E. XILINX
 ALL PROGRAMMABLE

